18.152 PROBLEM SET 3 due March 14th 9:30 am (Gradescope).

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Ω is a bounded open subset of \mathbb{R}^2 and smooth boundary. In addition, g is a smooth function defined on $\partial\Omega$. Assume that u is a smooth harmonic function defined on $\overline{\Omega}$ satisfying u = g on $\partial\Omega$.

- (1) Show that $|u(x)| \leq \max_{\partial \Omega} |g(x)|$.
- (2) Given a ball $B_r(x_0) \in \Omega$, establish an upper bound for $|\nabla u(x_0)|^2$ in terms g and r by using the cut-off function $\eta = (r^2 |x x_0|^2)_+$ and the cut-off function.
- (3) Given a ball $B_r(x_0) \in \Omega$, establish an upper bound for $|\nabla u(x_0)|^2$ in terms g and r by using Poisson's formula.

Hint for 1-(2): Consider $w = \eta^2 |\nabla u|^2 + Ku^2$ for constant K. And find out a sufficiently large K to make w a subsolution.

Problem 2. Ω is a bounded open subset of \mathbb{R}^2 and smooth boundary. In addition, g is a smooth function defined on $\partial\Omega$. Assume that u is a smooth function defined on $\overline{\Omega}$ satisfying u = g on $\partial\Omega$ and the following equation on Ω .

(1)
$$(1+u_x)u_{xx} + \frac{u_{yy}}{1+x^2+y^2} = 0.$$

Show that $|u(x)| \leq \max_{\partial \Omega} |g(x)|$.

Hint: We can consider $u_{xx} = b_x$, and apply the maximum principle.

Problem 3. Show that the Green function to a smooth bounded domain Ω is symmetric. Namely,

(2)
$$G(x,y) = G(y,x).$$

Hint: Given $x \neq y$, choose $\epsilon < |x - y|$. Next, define u(z) = G(x, z) and v(z) = G(y, z), and apply the Green's identity over the domain $\Omega \setminus (B_{\epsilon}(x) \cup B_{\epsilon}(y))$. By passing $\epsilon \to 0$, show u(y) = v(x).

Problem 4 (Liouville theorem). Suppose that $u : \mathbb{R}^n \to \mathbb{R}$ is a non-negative harmonic function. Show that u is a constant function.

Apply the Harnack's inequality to a large ball $B_R(0)$. Pass R to $+\infty$.

Problem 5 (Bonus). Suppose that $\Omega \subset \mathbb{R}^2$ is a rectangle, and G(x, y) is the corresponding Green function. Show that given smooth f, g the Green's representation

(3)
$$u(x) = -\int_{\Omega} f(y)G(x,y)dy - \int_{\partial\Omega} g(y)G_{\nu}(x,y)dy$$

solves the Dirichlet problem $\Delta u = f$ in Ω and u = g on $\partial \Omega$.

Hint: Suppose that the sides of Ω are parallel to the x, y-axis. Observe that the Laplacian of boundary integral is zero. Regarding the integral over Ω , split G into $\Phi + \varphi$. Show that $\Delta \varphi(x, y) = 0$ by using the result of problem 3. For the Φ , introduce a new variable z = y - x, and the corresponding domain $\Omega_x = \{y - x : y \in \Omega\}$. Split the integral region Ω_x into a small ball $B_{\epsilon}(0)$ and its outside. Consider the derivative of the integral over Ω_x .