18.152 PROBLEM SET 3

due March 14th 9:30 am (Gradescope).

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Ω is a bounded open subset of \mathbb{R}^{2} and smooth boundary. In addition, g is a smooth function defined on $\partial \Omega$. Assume that u is a smooth harmonic function defined on $\bar{\Omega}$ satisfying $u=g$ on $\partial \Omega$.
(1) Show that $|u(x)| \leq \max _{\partial \Omega}|g(x)|$.
(2) Given a ball $B_{r}\left(x_{0}\right) \in \Omega$, establish an upper bound for $\left|\nabla u\left(x_{0}\right)\right|^{2}$ in terms g and r by using the cut-off function $\eta=\left(r^{2}-\left|x-x_{0}\right|^{2}\right)+$ and the cut-off function.
(3) Given a ball $B_{r}\left(x_{0}\right) \in \Omega$, establish an upper bound for $\left|\nabla u\left(x_{0}\right)\right|^{2}$ in terms g and r by using Poisson's formula.
Hint for 1-(2): Consider $w=\eta^{2}|\nabla u|^{2}+K u^{2}$ for constant K. And find out a sufficiently large K to make w a subsolution.

Problem 2. Ω is a bounded open subset of \mathbb{R}^{2} and smooth boundary. In addition, g is a smooth function defined on $\partial \Omega$. Assume that u is a smooth function defined on $\bar{\Omega}$ satisfying $u=g$ on $\partial \Omega$ and the following equation on Ω.

$$
\begin{equation*}
\left(1+u_{x}\right) u_{x x}+\frac{u_{y y}}{1+x^{2}+y^{2}}=0 . \tag{1}
\end{equation*}
$$

Show that $|u(x)| \leq \max _{\partial \Omega}|g(x)|$.
Hint: We can consider $u_{x x}=b_{x}$, and apply the maximum principle.

Problem 3. Show that the Green function to a smooth bounded domain Ω is symmetric. Namely,

$$
\begin{equation*}
G(x, y)=G(y, x) . \tag{2}
\end{equation*}
$$

Hint: Given $x \neq y$, choose $\epsilon<|x-y|$. Next, define $u(z)=G(x, z)$ and $v(z)=G(y, z)$, and apply the Green's identity over the domain $\Omega \backslash\left(B_{\epsilon}(x) \cup\right.$ $\left.B_{\epsilon}(y)\right)$. By passing $\epsilon \rightarrow 0$, show $u(y)=v(x)$.

Problem 4 (Liouville theorem). Suppose that $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a non-negative harmonic function. Show that u is a constant function.

Apply the Harnack's inequality to a large ball $B_{R}(0)$. Pass R to $+\infty$.

Problem 5 (Bonus). Suppose that $\Omega \subset \mathbb{R}^{2}$ is a rectangle, and $G(x, y)$ is the corresponding Green function. Show that given smooth f, g the Green's representation

$$
\begin{equation*}
u(x)=-\int_{\Omega} f(y) G(x, y) d y-\int_{\partial \Omega} g(y) G_{\nu}(x, y) d y \tag{3}
\end{equation*}
$$

solves the Dirichlet problem $\Delta u=f$ in Ω and $u=g$ on $\partial \Omega$.
Hint: Suppose that the sides of Ω are parallel to the x, y-axis. Observe that the Laplacian of boundary integral is zero. Regarding the integral over Ω, split G into $\Phi+\varphi$. Show that $\Delta \varphi(x, y)=0$ by using the result of problem 3 . For the Φ, introduce a new variable $z=y-x$, and the corresponding domain $\Omega_{x}=\{y-x: y \in \Omega\}$. Split the integral region Ω_{x} into a small ball $B_{\epsilon}(0)$ and its outside. Consider the derivative of the integral over Ω_{x}.

